Learning to Segment Moving Objects
نویسندگان
چکیده
We study the problem of segmenting moving objects in unconstrained videos. Given a video, the task is to segment all the objects that exhibit independent motion in at least one frame. We formulate this as a learning problem and design our framework with three cues: (i) independent object motion between a pair of frames, which complements object recognition, (ii) object appearance, which helps to correct errors in motion estimation, and (iii) temporal consistency, which imposes additional constraints on the segmentation. The framework is a two-stream neural network with an explicit memory module. The two streams encode appearance and motion cues in a video sequence respectively, while the memory module captures the evolution of objects over time, exploiting the temporal consistency. The motion stream is a convolutional neural network trained on synthetic videos to segment independently moving objects in the optical flow field. The module to build a “visual memory” in video, i.e., a joint representation of all the video frames, is realized with a convolutional recurrent unit learned from a small number of training video sequences. For every pixel in a frame of a test video, our approach assigns an object or background label based on the learned spatio-temporal features as well as the “visual memory” specific to the video. We evaluate our method extensively on three benchmarks, DAVIS, Freiburg-Berkeley motion segmentation dataset and SegTrack. In addition, we provide an extensive ablation study to investigate both the choice of the training data and the influence of each component in the pro-
منابع مشابه
Statistical Background Modeling Based on Velocity and Orientation of Moving Objects
Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...
متن کاملNear-Minimum-Time Motion Planning of Manipulators along Specified Path
The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...
متن کاملMotion Segmentation based on On-line Non-parametric Learning using RGB-D Data
Motion segmentation is a fundamental technology in many robotic applications, such as mapping and navigation in dynamic environments. In this study, we propose a novel motion segmentation approach based on on-line non-parametric learning using RGB-D data. The proposed approach requires no prior information, such as hand-labelled initial segmentation. Foreground cues are derived from dense optic...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.01127 شماره
صفحات -
تاریخ انتشار 2017